High-frequency robust position control of a nonlinear piezoelectric bending actuator

Author:

Shahabi Pouyan1ORCID,Ghafarirad Hamed1ORCID,Taghvaeipour Afshin1

Affiliation:

1. Mechanical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic), Iran

Abstract

Piezoelectric bending actuators have been widely used in a variety of micro- and nano-applications, including atomic force microscopy, micro assembly, cell manipulation, and in general, micro electromechanical systems. However, their control algorithms at low frequencies suffer from nonlinearities such as hysteresis in high voltages and creep in long-time static applications. Also, in high-frequency applications, especially near the actuator natural frequencies, the actuator dynamic is greatly affected by the material nonlinearity. Therefore, the control approaches based on the linear dynamic modeling cannot be effective at high frequencies. Thus, the position control of the foregoing actuators become challenging, and it has been of researchers’ interests in the last decade. In this article, the robust position control of a bimorph piezoelectric bending actuators is investigated. In this regard, based on the nonlinear constitutive equations and the Euler–Bernoulli beam theory, a nonlinear dynamic model is presented. Then, to track a desired motion trajectory, an observer-based robust position control algorithm is proposed. The proposed control methodology is able to accommodate parametric uncertainties and other un-modeled dynamics. Also, it ensures the elimination of the position tracking error in the presence of the estimated states. Finally, the tracking ability of the controller is demonstrated in an experimental study. The experimental results show that the identification of the system is properly conducted with the average error of 5.5%. Also, the efficiency of the robust controller is proved with the error of 3.7% and 4.9% in the position tracking of the actuator inside and outside of the identified region, respectively.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamics modeling and experiment validation for piezoelectric-transmission-wing system;International Journal of Mechanical Sciences;2024-01

2. Design, Modeling and Implementation of Rotary Piezoelectric Motor;2023 11th RSI International Conference on Robotics and Mechatronics (ICRoM);2023-12-19

3. Design and Analysis of Piezoelectric Aided Dispensing System for Fluid Droplet Generation;2023 11th RSI International Conference on Robotics and Mechatronics (ICRoM);2023-12-19

4. Boundary feedback stabilization of a novel bilinear and extensible piezoelectric beam model;Zeitschrift für angewandte Mathematik und Physik;2022-12-16

5. Theoretical and experimental investigation of coupled longitudinal-transverse nonlinear vibration for micro-positioning piezoelectric bending actuators;Journal of the Brazilian Society of Mechanical Sciences and Engineering;2022-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3