Stability and convergence analysis for different harmonic control algorithm implementations

Author:

Zazas Ilias1,Daley Steve1

Affiliation:

1. Institute of Sound and Vibration Research, University of Southampton, Southampton, UK

Abstract

In many engineering systems there is a common requirement to isolate the supporting foundation from low frequency periodic machinery vibration sources. In such cases the vibration is mainly transmitted at the fundamental excitation frequency and its multiple harmonics. It is well known that passive approaches have poor performance at low frequencies and for this reason a number of active control technologies have been developed. For discrete frequencies disturbance rejection Harmonic Control (HC) techniques provide excellent performance. In the general case of variable speed engines or motors, the disturbance frequency changes with time, following the rotational speed of the engine or motor. For such applications, an important requirement for the control system is to converge to the optimal solution as rapidly as possible for all variations without altering the system's stability. For a variety of applications this may be difficult to achieve, especially when the disturbance frequency is close to a resonance peak and a small value of convergence gain is usually preferred to ensure closed-loop stability. This can lead to poor vibration isolation performance and long convergence times. In this paper, the performance of two recently developed HC algorithms are compared (in terms of both closed-loop stability and speed of convergence) in a vibration control application and for the case when the disturbance frequency is close to a resonant frequency. In earlier work it has been shown that both frequency domain HC algorithms can be represented by Linear Time Invariant (LTI) feedback compensators each designed to operate at the disturbance frequency. As a result, the convergence and stability analysis can be performed using the LTI representations with any suitable method from the LTI framework. For the example mentioned above, the speed of convergence provided by each algorithm is compared by determining the locations of the dominant closed-loop poles and stability analysis is performed using the open-loop frequency responses and the Nyquist criterion. The theoretical findings are validated through simulations and experimental analysis.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model-based feedforward control for suppressing torque oscillation of electric power steering system;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2021-11-12

2. Active vibration isolation system based on the LADRC algorithm for atom interferometry;Applied Optics;2020-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3