Low-frequency vibration suppression of metastructure beam with high-static–low-dynamic stiffness resonators employing magnetic spring

Author:

Peng Fanglan12ORCID,Wu Qichen12,Pan Wuhui12,Zheng Yisheng3ORCID,Xie Shilin12ORCID,Zhang Yahong12,Luo Yajun12ORCID

Affiliation:

1. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, China

2. School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, China

3. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiaotong University, Shanghai, China

Abstract

The low/ultra-low-frequency structural vibrations exist widely in some engineering structures, for example, aerospace, naval, and building structures and so on. They could seriously affect the working performance and even cause the destruction of these engineering structures. In order to restrain the low/ultra-low-frequency structural vibration, a locally resonant (LR) metastructure beam equipped with high-static–low-dynamic stiffness (HSLDS) resonators employing negative stiffness magnetic spring is proposed. The analytical model of magnetic negative stiffness spring is firstly derived and the design method of HSLDS resonators is presented based on parametric optimization. Then, the dynamic model of the LR metastructure beam with HSLDS resonators is established using the wave finite element method. The effects of the number of local resonator units on low-frequency band gap are analyzed. Finally, the low-frequency vibration control performance of LR metastructure beam is validated experimentally. The experimental result is in agreement with the theoretical analysis, which demonstrates that the HSLDS resonators are conductive to suppress vibration of the metastructure beam in the low-frequency region ( f < 10 Hz). The results also showed that the more the HSLDS resonators are used, the better the vibration suppression effect is.

Funder

NSAF

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3