Affiliation:
1. Vietnam National University, Hanoi, Vietnam
Abstract
This paper presents an analytical investigation on the nonlinear dynamic analysis of functionally graded double curved thin shallow shells using a simple power-law distribution (P-FGM) with temperature-dependent properties on an elastic foundation and subjected to mechanical load and temperature. The formulations are based on the classical shell theory, taking into account geometrical nonlinearity, initial geometrical imperfection, temperature-dependent properties and unlike other publications, Poisson ratio is assumed to be varied smoothly along the thickness [Formula: see text]. The nonlinear equations are solved by the Bubnov-Galerkin and Runge-Kutta methods. The obtained results show the effects of temperature, material and geometrical properties, imperfection and elastic foundation on the nonlinear vibration and nonlinear dynamical response of double curved FGM shallow shells. Some results were compared with those of other authors.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献