Joint loss learning-enabled semi-supervised autoencoder for bearing fault diagnosis under limited labeled vibration signals

Author:

Liang Mingxuan1,Zhou Kai23ORCID

Affiliation:

1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, China

2. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

3. Department of Mechanical Engineering and Engineering Mechanics, Michigan Technological University, Houghton, MI, USA

Abstract

Rolling bearing is a critical component of machinery that has been widely applied in manufacturing, transportation, aerospace, and power and energy industries. The timely and accurate bearing fault detection thus is of vital importance. Computational data-driven deep learning has recently become a prevailing approach for bearing fault detection. Despite the progress of the deep learning approach, the deep learning performance is hinged upon the size of labeled data, the acquisition of which is expensive in actual implementation. Unlabeled data, on the other hand, are inexpensive. In this research, we develop a new semi-supervised learning method built upon the autoencoder to fully utilize a large amount of unlabeled data together with limited labeled data to enhance fault detection performance. Compared with the state-of-the-art semi-supervised learning methods, this proposed method can be more conveniently implemented with fewer hyperparameters to be tuned. In this method, a joint loss is established to account for the effects of labeled and unlabeled data, which is subsequently used to direct the backpropagation training. Systematic case studies using the Case Western Reserve University (CWRU) rolling bearing dataset are carried out, in which the effectiveness of this new method is verified by comparing it with other well-established baseline methods. Specifically, nearly all emulation runs using the proposed methodology can lead to around 2%–5% accuracy increase, indicating its robustness in performance enhancement.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3