Method of De-Noising By Spectral Subtraction Applied to the Detection of Rolling Bearings Defects

Author:

Estocq P.1,Bolaers F.2,Dron J. P.1,Rasolofondraibe L.3

Affiliation:

1. Groupe de Mécanique Matériaux et Structures/Groupe de Mécanique Appliquée, Université de Reims Champagne-Ardenne, IUT Reims, rue des Crayéres, BP 1035, 51687 Reims Cedex 2, France

2. Groupe de Mécanique Matériaux et Structures/Groupe de Mécanique Appliquée, Université de Reims Champagne-Ardenne, IUT Reims, rue des Crayéres, BP 1035, 51687 Reims Cedex 2, France,

3. Laboratoires d’Automatique et de Micro-électronique, UFR sciences exactes et naturelles, Moulin de la housse, BP 1039, 51687 Reims Cedex 2, France

Abstract

In this paper we aim to show the significance of spectral subtraction for the improvement of the sensitivity of scalar indicators (crest factor, kurtosis) within the application of conditional maintenance by vibratory analysis on ball bearings. If we consider the case of a bearing in good condition of use, the distribution of the amplitudes in the signal is Gaussian. When the bearing is damaged, the appearance of spallings disturbs this signal, modifying this distribution. This modification goes through the presence of periodical impulses produced each time a rolling element meets a discontinuity on its way. Nevertheless, the presence of background noise induced by random impulse excitations can have an influence on the values of these temporal indicators. The de-noising of these signals by spectral subtraction in different frequency bands allows us to improve the sensitivity of these indicators and to increase the reliability of the diagnosis.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3