Dynamic analysis of thick beams with functionally graded porous layers and viscoelastic support

Author:

Akbaş Şeref D1,Bashiri Abdullateef H2,Assie Amr E23,Eltaher Mohamed A43ORCID

Affiliation:

1. Department of Civil Engineering, Bursa Technical University, Turkey

2. Mechanical Engineering Department, Faculty of Engineering, Jazan University, Saudi Arabia

3. Mechanical Design and Production Department, Faculty of Engineering, Zagazig University, Egypt

4. Mechanical Engineering Department, Faculty of Engineering, King Abdulaziz University, Saudi Arabia

Abstract

This study presents dynamic responses of a composite thick beam with a functionally graded porous layer under dynamic sine pulse load. The boundary conditions of the composite beam are considered as viscoelastic supports. Three layers are considered, and face sheet layers have porous functionally graded materials in which the distribution of material gradation through the graded layer is described by the power law function, and the porosity is depicted by three different distributions (i.e., symmetric distribution, X distribution, and ◊ distribution). The layered composite thick beam is modeled as a two-dimensional plane stress problem. The equation of motion is obtained by Lagrange’s equations. In formation of the problem, the finite element method is used with a 12-node 2D plane element. In the solution process of the dynamic problem, a numerical time integration method of the Newmark method is used. In numerical analyses, influences of stiffness and damping coefficients of viscoelastic supports, material gradation index, porosity parameter, and porosity models on the dynamic response of thick functionally graded porous beam are investigated under the pulse load.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3