Affiliation:
1. Department of Mechanical Engineering, Federal Technological University of Paraná, Brazil
2. School of Mechanical Engineering, Federal University of Uberlândia, Brazil
Abstract
Some active vibration control methods are based on mathematical models. In these cases, parameter variations play an important role in the system performance. As it is not possible to know in advance the precise values for all parameters of the mechanical system, a possible alternative is to design robust controllers that take into account the uncertainties. In this context, this work presents a vibration active control technique devoted to rotating machinery by incorporating electromagnetic actuators, which considers uncertainties in the parameters of the system. the gains of the electromagnetic actuator are determined by using linear matrix inequalities, which consist in a powerful tool for the cases in which parameter uncertainties are taken into account. In addition, Kalman estimators are employed to deduce the modal states of the system. The model of the rotating system is obtained by using the finite element method and the potentiality of the methodology for applications in engineering was investigated through experimental tests.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献