Affiliation:
1. Department of Mechanical Engineering, Indian Institute of Technology Guwahati, India
2. Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, India
Abstract
In this work, a new 0-3 viscoelastic composite (VEC) layer is presented for augmented constrained layer damping of plate vibration. The 0-3 VEC layer comprises a rectangular array of the thin rectangular graphite-wafers embedded within the viscoelastic matrix. The inclusions of graphite-wafers in the constrained 0-3 VEC layer confine the motion of the viscoelastic phase for its reasonable in-plane strains along with the enhanced transverse shear strains. This occurrence of coincidental shear and extensional strains within the viscoelastic phase is supposed to cause augmented damping capacity of the constrained layer, and it is investigated by integrating the constrained 0-3 VEC layer over the top surface of a substrate plate. A finite element (FE) model of the overall plate is developed based on the layer-wise shear deformation theory. Using this FE model, first, a bending analysis of the overall plate is performed to investigate the mechanisms of damping in the use of 0-3 VEC layer. Next, the damping in the overall plate is quantified for different sets of values of the geometrical parameters of the 0-3 VEC layer. These results reveal significant improvement of damping in the plate due to the inclusions of graphite-wafers within the constrained viscoelastic layer. But, the augmentation of damping indicatively depends on the geometrical parameters in the arrangement of the graphite-wafers. So, the 0-3 VEC layer is configured appropriately through an optimization algorithm, and finally, the forced frequency responses of the overall plate are evaluated to demonstrate the augmented attenuation of vibration-amplitude via the inclusions of graphite-wafers within the constrained viscoelastic layer in an optimal manner.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献