Vibration stability of a cantilevered thin plate with inner fluid circulation

Author:

Wang Yunjie1ORCID,Yin Yajun1,Zheng Gangtie1

Affiliation:

1. School of Aerospace Engineering, Tsinghua University, China

Abstract

The vibration of a cantilevered thin plate with inner fluid circulation is a typical situation in engineering. The plate’s vibration can be considered a combination of bending motion and torsional motion. With the force generated by the inner fluid circulation on the plate, these two types of motion affect each other and raise the problem of stability. In the present study, the vibration stability of different vibrating pattern thus generated is investigated. It is found that with the increase of the flow velocity, torsional mode frequencies decrease synchronously, whereas their modal shapes remain unchanged, which results in the buckling of the plate. Under the circumstance of coupled vibration, because both bending and torsional modal frequencies vary with the flow velocity, a phenomenon of coupled-mode flutter occurs between a certain pair of modes with frequency orders of (2 k) and (2 k − 1) and vibration becomes unstable.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3