Modeling and experimental verification of a variable-stiffness isolation system using a leverage mechanism

Author:

Lu Lyan-Ywan1,Chu Shih-Yu2,Yeh Shih-Wei3,Peng Chih-Hua2

Affiliation:

1. Department of Construction Engineering, Kaohsiung, Taiwan,

2. Department of Civil Engineering, National Cheng Kung University, Taiwan

3. Department of Construction Engineering, Kaohsiung, Taiwan

Abstract

Recent studies have discovered that conventional isolation systems may incur excessive isolator displacement in a near-fault earthquake with strong long-period wave components. To overcome this problem without jeopardizing isolation efficiency, a novel semi-active isolation system called a Leverage-type Variable Stiffness Isolation System (LVSIS) is realized in this study. By utilizing a simple leverage mechanism, the isolation stiffness of the LVSIS can be easily controlled by adjusting the position of the pivot point on the leverage arm. For accurate analysis, the dynamic equation based on a mathematical model that considers the actual situation of all friction forces within the LVSIS is derived in the study. The mathematical model is then verified experimentally by using a prototype LVSIS tested dynamically on a shaking table. Furthermore, to determine the on-line pivot position of the LVSIS, this study also proposes a semi-active control law whose feedback gain is decided by utilizing a linear active control algorithm, such as the LQR or modal control. By comparing the isolation performance of its uncontrolled passive counterpart, the test results also demonstrate that the LVSIS with the proposed control law is especially effective in suppressing the excessive base displacement induced by a near-fault earthquake.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3