Experimental studies on active vibration control of smart plate using a modified PID controller with optimal orientation of piezoelectric actuator

Author:

Simonović Aleksandar M1,Jovanović Miroslav M2,Lukić Nebojša S2,Zorić Nemanja D1,Stupar Slobodan N1,Ilić Slobodan S2

Affiliation:

1. University of Belgrade, Faculty of Mechanical Engineering, Belgrade, Serbia

2. Serbian Armed Forces, Technical Test Center, Belgrade, Serbia

Abstract

This paper presents a design, development and experimental verification of an active vibration control system of aluminum plate. The active structure consists of an aluminum rectangular plate as the host structure, strain gages as the sensor element and a piezoceramic patch as the actuation element. Based on characteristics of the integrated elements with use of the fuzzy optimization strategy based on the pseudogoal function the optimal orientation of piezoelectric actuator is found, and the whole active vibration control system is designed and developed. The active vibration control system is controlled by proportional-integral-derivative (PID) control strategy. Control algorithm was implemented on the PIC32MX440F256H microcontroller platform. In order to prevent it from negative occurrences from derivative and integral terms in a PID controller, the first-order low-pass filters are implemented in the derivative action and in the feedback of integral action. The experiment considers active damping control under periodic excitation. Experiments are conducted to verify the effectiveness of the vibration suppression and to compare the damping effect with different adjustment of PID gains. Experimental results corresponding to the developed active vibration control system are presented. The system suppresses more than 90% of vibration amplitude, which confirms the high level of effectiveness in vibration active damping at the proposed active structure.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3