Rotation-induced axial oscillation of a composite nanoconvertor at low temperature

Author:

Song Bo1ORCID,Cai Kun2ORCID,Shi Jiao13,Qin Qing-Hua4

Affiliation:

1. College of Water Resources and Architectural Engineering, Northwest A&F University, China

2. Centre for Innovative Structures and Materials, School of Engineering, RMIT University, Australia

3. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, China

4. Research School of Engineering, The Australian National University, Australia

Abstract

We propose a model of a nanostructure which can transform an input rotation into an output oscillation. In the model, the rotor has two identical internally hydrogenated deformable parts. The mechanism is that the rotation-induced centrifugal force and van der Waals force drive the recoverable deformation of the hydrogenated deformable parts, which gives rise to the axial translation of the free end of the rotor. Once the two hydrogenated deformable parts deform periodically, the free end of the rotor oscillates periodically in the axial direction. Molecular dynamics simulations are conducted to reveal the dynamic response of the system at low temperature. Four main types of deformation and the first three orders of vibration responses of the hydrogenated deformable parts are analyzed. Synchronous breathing vibration of the two hydrogenated deformable parts produces ideal oscillation with large amplitude. Asynchronous axial vibration of the hydrogenated deformable parts reduces the oscillation amplitude or produces beat vibration. The way to control the amplitude of the axial oscillation/vibration is given.

Funder

National Key Research and Development Plan

National Natural Science Foundation of China

State Key Laboratory of Structural Analysis for Industrial Equipment

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3