A quantitative measure of the degree of output controllability for output regulation control systems: Concept, approach, and applications

Author:

Xia Yaping1ORCID,Li Ruiyu2,Yin Minghui3,Zou Yun3

Affiliation:

1. School of Automation and Electronic Information, Xiangtan University, PR China

2. China Ship Development and Design Center, PR China

3. School of Automation, Nanjing University of Science and Technology, PR China

Abstract

Currently, many research studies reveal that for state regulator problems, the higher the degree of controllability is, the better the control effect likely is. Note that for the output regulator problems, the control performance is often evaluated by outputs. This article hence generalizes the concept and applications of degree of controllability to the case of output regulator. To this end, a kind of degree of output controllability is presented. Furthermore, simulations on wind turbines and the inverted pendulum system demonstrate that better control effect may be achieved by increasing the degree of output controllability measure. These results imply that similar to the case of degree of controllability for state regulation control, the degree of output controllability measure is likely a feasible candidate index for the design and optimization of the structural parameters of controlled plants in the case of output regulation control.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Doctoral Program of Higher Education of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Method to Analyze Input-Output Controllability;2021 18th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE);2021-11-10

2. Disturbance rejection and reference tracking of time delayed systems using Gramian controllability;International Journal of Dynamics and Control;2021-07-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3