Dynamic behavior of an embedded rail track coupled with a tram vehicle

Author:

Ling Liang1,Han Jian1,Xiao Xinbiao1,Jin Xuesong1

Affiliation:

1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, China

Abstract

This paper presents an investigation into the dynamic behavior of an embedded rail track coupled with a tram vehicle in time domain. A new designed embedded rail track structure firstly introduced into the Chinese tramways is described and the results of vibration tests of the embedded rail track (ERT) and another fastened slab track (FST) are discussed. A three-dimensional (3D) dynamic model of a tram vehicle coupled with an embedded rail track was developed on the basis of the multi-body dynamics approach and the finite element method. In the model, the tram vehicle was modeled as a multi-body system. The embedded rail track was modeled as a two layer system consisting of two rails, filling material, slabs, and adjustment layer beneath slabs. The rails were treated as Timoshenko beams with continuous elastic supports, in which the modal superposition method was used to reduce the order of the partial differential equations of beams. Continuous viscoelastic elements were used to represent the filling material and rail pad that connecting the rails and the slabs. The concrete slabs were modelled using the 3D finite element method, while the modal superposition method was adopted to improve the computational efficiency. Uniformly viscoelastic elements were introduced to model the elastic layer beneath the concrete slabs. The proposed model was then applied to compare the dynamic response of the innovative embedded rail track with respect to a conventional fastened slab track. The numerical results indicate that the innovative embedded rail track has advantages over the fastened slab track for its potentialities to reduce the dynamic wheel/rail force, the vibration level and deformation of the track parts, and the track defects and damages.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3