Self-tuning control of parametrically excited active magnetic bearing system due to harmonic base motion using fuzzy logic

Author:

Soni Tukesh1ORCID,Dutt Jayanta K2,Das AS3

Affiliation:

1. UIET, Panjab University, Chandigarh, India

2. Mechanical Engineering, IIT, Delhi, India

3. Mechanical Engineering, Jadavpur University, Kolkata, India

Abstract

Using active magnetic bearings for vibration control of flexible rotors subject to large base motion is both interesting and challenging. Rotors on ships, airplanes, and space-crafts fall in this category. These applications pose challenge for the active magnetic bearing designer, as the large motion of base renders the rotor-shaft-AMB system, time varying in nature, and also causes parametric excitation to the rotor system. Apart from stability concerns in such systems, it is difficult to design and choose optimal values of controller parameters because the system is subject to different base motions at different times during operation. In order to address this issue, this work applies fuzzy logic and proposes a simple yet effective selftuning control (STC) to control vibrations of flexible rotors supported by active magnetic bearings, which is subject to excitations due to base motion, in addition to unbalance excitation, usually present in rotors. To this end, first, the controller parameters are optimized considering the levitation performance of active magnetic bearings based on the transient response. Next, the fuzzy logic-based self-tuning algorithm is presented. Detailed comparison of performance between optimal and self-tuning control for different base motion conditions show that the proposed self-tuning controller outperforms the optimal control.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3