An adaptive sliding mode fault-tolerant control for semi-active suspensions with magnetorheological dampers based on T-S fuzzy vehicle models

Author:

Yang Haohan1ORCID,Liu Qingwei1,Zhang Yongchao2,Yu Fan1

Affiliation:

1. School of Mechanical Engineering, Shanghai Jiao Tong University, China

2. School of Aeronautical Engineering, Taizhou University, China

Abstract

This paper investigates an improved adaptive sliding mode fault-tolerant control strategy for a magnetorheological semi-active suspension system with parametric uncertainties and actuator faults. Using the experimental data collected by a quarter-vehicle test rig, an adaptive-network-based fuzzy inference system is employed to establish a learning-based magnetorheological damper model firstly. The Takagi-Sugeno fuzzy approach is introduced to deal with the uncertainties of sprung mass and pitch rotary inertia and then the corresponding Takagi-Sugeno faulty semi-active suspension system is constructed. An adaptive sliding mode fault-tolerant controller is proposed, in which the magnetorheological damper fault gain is observed by the designed estimation law, and the asymptotical stability of the system is further analyzed. Finally, numerical simulation tests are conducted to demonstrate the effectiveness of the designed control scheme.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3