Affiliation:
1. Department of Mechanical Engineering, Hsiuping University of Science and Technology, Taiwan
Abstract
The effects of third-order shear deformation theory and varied shear correction coefficient on the vibration frequency of thick functionally graded material cylindrical shells with fully homogeneous equation under thermal environment are investigated. The nonlinear coefficient term of displacement field of third-order shear deformation theory is included to derive the fully homogeneous equation under free vibration of functionally graded material cylindrical shells. The determinant of the coefficient matrix in dynamic equilibrium differential equations under free vibration can be represented into the fully fifth-order polynomial equation, thus the natural frequency can be found. Two parametric effects of environment temperature and functionally graded material power law index on the natural frequency of functionally graded material thick cylindrical shells with and without the nonlinear coefficient term of displacement fields are computed and investigated.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献