Artificial bee colony with predator effect algorithm for proportional integral derivative controller tuning

Author:

Singh Nirbhow Jap1ORCID,Chopra Vikram1,Pandey Sandeep1

Affiliation:

1. Department of Electrical and Instrumentation Engineering, Thapar Institute of Engineering and Technology, Patiala, India

Abstract

This paper proposes a novel artificial bee colony with predation effect (ABCPE) algorithm for tuning a proportional integral derivative (PID) controller. The mathematical model of ABCPE algorithm to introduce predator effect in the foraging behavior of artificial bees colony algorithm has been formulated. The proposed algorithm has been tested on tuning problems of different process models. The simulation results reveal that the closed-loop responses are relatively fast and non-oscillatory as compared to the frequency response analysis method for reference tracking. Further, the results obtained using ABCPE are also compared with other evolutionary algorithms. The exhaustive analysis shows that the ABCPE-based solution approach leads to a set of tuning parameters having smaller overshoot, less setting time, and rise time compared to other solution approaches. The stability analysis using Nichols plot reveals that the phase margin of proposed algorithm is higher as compared to other tuning methods. Finally, the convergence behavior and robustness analysis reveals the effectiveness of the proposed approach to solve engineering design problems.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3