Affiliation:
1. China Aerodynamics Research and Development Center (CARDC), People’s Republic of China
2. Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), People’s Republic of China
Abstract
Modal parameters provide an insight into the dynamical properties of structures. In the time–frequency domain–based methods, time–frequency ridges contain crucial information on the characteristics of multicomponent signals, and manually extracting time–frequency ridges is a huge burden, especially when long-time time-varying modal parameters are focused on. In this study, time–frequency ridge extraction is converted into a multi-objective optimization problem, and a new hybrid method of multi-objective particle swarm optimization and k-means clustering is proposed to solve such a multi-objective optimization problem. In the hybrid method, the particle swarm is partitioned into sub-swarms by k-means clustering, and the sub-swarms are used to search new solutions for updating a finite-sized external archive, which is used as the exclusive centroids of the k-means clustering. Simultaneously, the finite-sized external archive serves as global best positions of sub-swarms. Both simulated and experimental cases are applied to validate the hybrid method. With the aid of the hybrid method, the influence of varying temperatures on modal parameters of a column beam is experimentally analyzed in detail.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献