Vibration suppression using integrated topology optimization of host structures and damping layers

Author:

Zhang Xiaopeng1,Kang Zhan12

Affiliation:

1. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, China

2. National Engineering Research Center of Shipbuilding, China

Abstract

It is often desirable to simultaneously optimize the damping and stiffness distribution in the design of shell structures incorporating damping material layers for achieving the best vibration mitigation performance. This paper investigates the integrated topology optimization of host structures and damping layers for reducing the vibration level in the presence of harmonic excitations. Therein, the global damping matrix is a nonproportional one due to distributed damping effects. For an efficient frequency response analysis of the system with nonproportional damping, reduced-order equations are obtained by using lower-order eigenvectors of the undamped system, and then the method of complex mode superposition is employed for solving the dynamic equations in the state space. In the optimization model, the vibration amplitudes at specified positions are taken as the objective function. The relative densities of the elements are considered as design variables, and an artificial damping material model relating the local damping properties to the elemental density variables is employed. The Rational Approximation of Material Properties model is adopted to avoid localized modes in low-density areas during the optimization process. Numerical examples are presented to illustrate the effectiveness and efficiency of the proposed framework.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3