An analytic formulation for blind modal identification

Author:

McNeill SI1

Affiliation:

1. Stress Engineering Services, Inc., Houston, TX, USA

Abstract

In this paper a complex-valued formulation of the modal superposition equation is provided and shown to be equivalent to the original, real-valued Blind Modal IDentification (BMID) problem. The complex-valued variant involves the analytic form of the physical and modal responses. The formulation is shown to be more concise and straightforward than the original. It is noted that complex-valued mode shapes can be obtained using a complex version of the two-step Joint Approximate Diagonalization (JAD) algorithm. Using this approach the modal response pairing step of the original BMID method is eliminated. Since the development of the original BMID method, several new, one-step JAD algorithms have been devised. Many of the algorithms can be extended to identify complex mixing matrices. A complex version of the one-step JAD method known as the Weighted Exhaustive Diagonalization with Gauss itErations algorithm is utilized to solve for the complex mode shapes and modal responses. By using this simplified formulation, the whitening step is eliminated, as well as the modal response pairing step, which is necessary in the original BMID algorithm. Performance of the new Complex BMID (CBMID) algorithm is evaluated by application to synthesized data from a three-degrees-of-freedom system with complex modes, application to measured laboratory data on a structural frame and application to measured output-only data from the Heritage Court Tower building. It is seen that the CBMID method results in essentially the same estimates of modal responses, complex mode shapes, natural frequencies and modal damping compared to results from BMID. Furthermore, it is shown that modal parameters from BMID and CBMID are very consistent with those obtained from state-of-the-art methods, such as the Eigensystem Realization Algorithm and the covariance-driven Stochastic Subspace Identification method.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3