Vibration isolation characteristics of a novel composite flexible vibration-damping foundation

Author:

Qin Yuxuan1,Pang Fuzhen1,Tang Yang1,Lin Yaotao1,Zhang Hang2,Li Haichao1ORCID

Affiliation:

1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China

2. School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai, China

Abstract

To address the challenge of low-frequency vibration in ships, we introduce a vibration isolation technique and a composite flexible vibration-damping foundation grounded in the principles of impedance equalization and the off-plane attenuation properties of surface waves. We utilize a fluid-structural coupling finite element method and experimental validation to analyze the effect of various properties of the liquid layer of the base. The results indicate that the composite foundation offers superior vibration isolation compared to traditional foundations across a frequency range of 10–500 Hz. Enhancements in the liquid’s viscosity and an increased layer thickness are found to significantly bolster the foundation’s ability to isolate vibrations. The relationship between liquid density and the vibration isolation performance of the base is not entirely positive. An increase in liquid density does provide some improvement to the vibration isolation performance at higher frequencies. Additionally, the presence of multiple liquid sacs within the foundation has a minimal influence on low-frequency isolation but proves to be increasingly beneficial at higher frequencies. Through this study, we aim to provide fresh perspectives and solutions for the attenuation and management of low-frequency vibrations in ships.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Heilongjiang Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3