Adaptive cerebellar model articulation controller–nonlinear control system for flexible link manipulator

Author:

Maouche Amin Riad1,Attari Mokhtar2

Affiliation:

1. Department of Computer Sciences, Mhamed Bougara University of Boumerdes, Algeria

2. Department of Instrumentation and Control, Houari Boumedien University of Sciences and Technologies, Algiers, Algeria

Abstract

This paper deals with the problem of controlling flexible link manipulators on the dynamic phase of the trajectory. A flexible beam/arm is an appealing option for civil and military applications, such as space-based robot manipulators. However, flexibility brings with it unwanted oscillations and severe chattering which may even lead to an unstable system. To tackle these challenges, a novel control architecture scheme is presented. First, a nonlinear controller based on the equation of motion of the robot is elaborated. Its aim is to produce a stable tracking control and dump the vibration of the links. Then, an adaptive cerebellar model articulation controller is implemented to compensate for structured and unstructured uncertainties. Efficiency of the new controller obtained is tested facing an important variation of the dynamic parameters of the manipulator. Simulation results on a dynamic trajectory with a high acceleration/deceleration ratio show the effectiveness of the proposed control strategy.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3