Adaptive fast iterative filter Holo-spectrum analysis and its applications to fault diagnosis of rolling bearing

Author:

Peng Guoliang12,Zheng Jinde12ORCID,Tong Baohong12,Tong Jinyu12ORCID

Affiliation:

1. Anhui Province Engineering, Laboratory of Intelligent Demolition Equipment, Maanshan, China

2. School of Mechanical Engineering, Anhui University of Technology, Maanshan, China

Abstract

As a signal demodulation analysis technique, Holo–Hilbert spectral analysis (HHSA) excels in capturing the intricate cross-scale coupling dynamics present in nonlinear and non-stationary vibration signals. Nonetheless, HHSA suffers from a lack of rigorous mathematical foundation, is subject to modal mixing constraints, and exhibits limited noise robustness. To address the aforementioned issues, this study presents an innovative nonlinear and non-stationary signal demodulation technique, referred to as adaptive fast iterative filter Holo-spectrum analysis (AFIFHSA). Also, an adaptive fast iterative filtering (AFIF) algorithm incorporated within AFIFHSA is designed to dynamically achieve a nonlinear and non-stationary signal decomposing. From that, several approximate narrowband signals, possessing physical significance at an instantaneous frequency, and a trend term can be obtained. Furthermore, the marginal spectrum (MS) obtained by AFIFHSA can be utilized to represent the effectiveness of fault characteristic identification. Lastly, the simulation and measured data are utilized to showcase AFIFHSA’s exceptional capabilities in recognizing high-resolution and eximious modulation relationships. The analysis outcomes additionally illustrate that AFIFHSA, as proposed, showcases superior performance in fault identification and robustness with comparison to other conventional approaches.

Funder

The New Era Education Quality Project of Anhui Province for Graduate Education

The National Natural Science Foundation of China

The Outstanding Youth Fund of Universities in Anhui Province of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3