Active control of human-induced vibrations on lightweight structures via electrodynamic actuator dynamics inversion

Author:

Ramírez-Senent José1ORCID,Gallegos-Calderón Christian1ORCID,García-Palacios Jaime H2,Díaz Iván M1

Affiliation:

1. E.T.S. de Ingenieros de Caminos, Canales y Puertos, Department of Continuum Mechanics and Theory of Structures, Universidad Politécnica de Madrid, Spain

2. E.T.S. de Ingenieros de Caminos, Canales y Puertos, Department of Civil Engineering, Hydraulics, Energy and Environment, Universidad Politécnica de Madrid, Spain

Abstract

The active vibration absorber represents an effective means to mitigate excessive vibrations in low-damping structures. Nevertheless, the dynamics of the actuators employed in such systems may negatively affect their performance and stability restricting their operational frequency range. This article presents an application of dynamics inversion techniques to the force control of electrodynamic proof-mass actuators employed as active vibration absorbers in lightweight pedestrian structures. The dynamics inversion approach is applied to enhance the classical direct velocity feedback scheme. Additionally, a novel method relying on dynamics inversion is presented: the Broadband Force Cancellation Algorithm. This procedure consists in estimating, in real-time, the equivalent force acting on the system to later apply it back to the structure with the opposed sign. The effectiveness of the proposed methods is assessed via numerical simulations carried over a realistic model of an existing lightweight footbridge and an electrodynamic proof-mass actuator. Two load cases are analyzed: a fixed swept-sine force and a walking load. Both cases account for the actuator-structure interaction. The human-structure interaction is considered in the latter scenario due to its importance when dealing with lightweight pedestrian structures. Simulation results demonstrate that the dynamics inversion techniques effectively cancel out actuator dynamics leading to an excellent tracking of the reference force output by the suggested or other vibration control algorithm. The proposed schemes are proved promising since they substantially outperform the widespread direct velocity feedback approach. In particular, the Broadband Force Cancellation Algorithm minimizes the action of the external forces within their estimation frequency range, thus being especially suited to tackle broadband excitations, important in lively pedestrian structures, whereas the velocity feedback methodology performs best at the structural resonant frequencies.

Funder

Ministerio de Ciencia e Innovación

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3