A comprehensive study on statistical prediction and reduction of tire/road noise

Author:

Mohammadi Somaye1ORCID,Ohadi Abdolreza12ORCID,Irannejad-Parizi Mostafa1ORCID

Affiliation:

1. Acoustics Research Laboratory, Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran

2. Vehicle Technology Research Centre, Technology Institute of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran

Abstract

Promoting safe tires with low external rolling noise increases the environmental efficiency of road transport. Although tire builders have been striving to reduce emitted noise, the issue’s sophisticated nature has made it difficult. This article aims to make the problem straightforward, relying on recent significant improvements in statistical science. In this regard, the prediction ability of new methods in this field, including support vector machine, relevance vector machine, and convolutional neural network, along with the new architecture of the neural network is compared. Tire noise is measured under the coast-by condition. Two training strategies are proposed: extracting features from a tread pattern image and directly importing an image to the model. The relevance vector method, which is trained using the first strategy, has provided the most accurate results with an error of 0.62 dB(A) in predicting the total noise level. This precise model is used instead of experimentation to analyze the sensitivity of tire noise to its parameters using a small central composite design. The parametric study reveals striking tips for reducing noise, especially in terms of interactions between parameters that have not previously been shown. Finally, a novel two-stage approach for reducing noise by tread pattern optimization is proposed, inspired by two regression models derived from statistical investigation and variance analysis. Changes in tread pattern specifications of two case studies and their randomization have resulted in a reduction of 3.2 dB(A) for a high-noise tire and 0.4 dB(A) decrement for a quieter tire.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tire noise prediction based on transfer learning and multi-modal fusion;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2024-02-28

2. Synthesis of equivalent sources for tyre/road noise simulation and analysis of the vehicle influence on sound propagation;Applied Acoustics;2024-01

3. Research on the effect of tire pattern design on noise and its reduction;The Journal of the Acoustical Society of America;2023-10-01

4. A Fast Approach to Optimize Tread Pattern Shape for Tire Noise Reduction;Applied Sciences;2023-09-13

5. Processing of tyre data for rolling noise prediction through a statistical modelling approach;Mechanical Systems and Signal Processing;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3