Drivability evaluation model using principal component analysis and optimized extreme learning machine

Author:

Huang Wei1ORCID,Liu Hai Jiang1,Ma Yi Fei1

Affiliation:

1. School of Mechanical Engineering, Tongji University, Shanghai, China

Abstract

The accuracy of the evaluation method is essential to optimize the control system and improve a vehicle’s drivability quality. This study aimed at exploring a more effective drivability evaluation method and a drivability evaluation model was proposed on the basis of principal component analysis and optimization of an extreme learning machine. The drivability evaluation model was built using an extreme learning machine. The input of the model was determined by the principal component analysis method, and the optimal number of neurons in the hidden layer of the drivability evaluation model was obtained by a particle swarm optimization algorithm. The experimental results show that considering the evaluation index coupling factors can improve the prediction accuracy of the evaluation model. The R correlation between the score predicted by the drivability evaluation model proposed in this paper and the actual score reached 0.979, and the predicted pass rate also reached 95%, which indicate the model was more accurate and stable than others. The evaluation model can be extended to fuel economy and handling stability. It also has theoretical guidance and application value in practical problems.

Funder

China Auto Industry Innovation and Development Joint Fund

Shanghai automobile Industry Technology Development Fund

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3