A study on coupled edgewise and flapwise vibration modes of wind turbine blade

Author:

Saram Muhammad Usman1ORCID,Yang Jianming1ORCID

Affiliation:

1. Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St John’s, NL, Canada

Abstract

The coupled flapwise and edgewise vibrations of a horizontal axis wind turbine blade (HAWT) are discussed in this paper. Kinetic and potential energies of the blade are evaluated with consideration of the effects of gravity and aerodynamic forces. Hamilton’s principle is employed to develop the nonlinear coupled modal equations of the blade. The coupling between the first order edgewise and the first two order of flapwise modes is considered. This leads to three equations with nonlinear terms. Multiple-scales perturbation method is employed to solve these equations. Furthermore, the numerical values of structural specifications of National Renewable Energy Laboratory (NREL) 5-MW reference wind turbine blade are used, for example. It is shown that first edgewise and first flapwise vibrations are dominant, while second flapwise mode of vibration is less significant in the case of transient responses. Energy transfer between resonant modes is observed in both internal and combination resonances. The amplitude–frequency curves and phase diagrams during primary and combination resonances are obtained for the steady-state responses. Combination and primary resonances are further examined by considering various factors such as geometric nonlinearity and aerodynamic force.

Funder

NSERC, Canada

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3