Covariance tracking method for designing a robust receding horizon controller

Author:

Bahrami Rad Afshin1,Katebi Javad1ORCID,Yaghmaei-Sabegh Saman1

Affiliation:

1. Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran

Abstract

In this paper, a novel covariance tracking receding horizon (CTRH) process is proposed to design a robust control algorithm. Some drawbacks of the equivalent robust algorithms, including infeasibility, computational complexity, and non-optimality, are alleviated in this process. Hence, first, covariance analysis is applied to rephrase the dynamic equation of the system to model the structural uncertainties. Afterward, this approach is extended to the future time horizons as the discrete-time formulations are to be embedded in the receding horizon controller framework. Then, a new constrained quadratic programming cost function is proposed considering the covariance matrix to mitigate the trajectory dispersion along with the control action. The final control rule is estimated by solving the new cost function using the Hildreth method. The efficiency of the developed robust algorithm is demonstrated by numerical simulation of two benchmark buildings equipped with active tendon systems subjected to earthquake excitations. The competency of the proposed method (CTRH) is then proven using nominal and various perturbed scenarios and outputs compared to the linear–quadratic–Gaussian (LQG) controller, sliding mode control (SMC), H∞, and conventional receding horizon (CRH) controllers, and comparative results are presented. The outcomes indicate that the proposed method not only well reduces the controlled responses compared to uncontrolled one but also demonstrate a high level of robustness against various other control approaches. Less computational complexity due to not adding any linear matrix inequalities and constraints is also one of the prominent features of the proposed approach.

Funder

University of Tabriz

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3