Affiliation:
1. Department of Mechanical and Industrial Engineering, IIT Roorkee, India
Abstract
This article presents a nonlinear vibration signature study of high-speed defective cylindrical roller bearings under unbalance rotor conditions. Qualitative analysis is conducted considering a spall defect of a specific size on major elements such as outer race, inner race, and rollers. A spring-mass model with nonlinear stiffness and damping is formulated to study the dynamic behavior of the rotor-bearing model. The set of nonlinear differential equations are solved using the fourth-order Runge–Kutta method to predict the characteristics of the discrete spectra and analyze the stability of the system. The results show that higher impulsive forces are generated because of outer race defects than defects in the inner race and roller. This can be explained as every time the roller passes through the defect in the outer race during rotation, the energy is released. However, in the case of both the roller and inner race defects, the impulsive force generated in the load zone is averaged because of the force generated in the unloading zone. The route to chaos from periodic to quasiperiodic response has been observed and analyzed that vibration signature is very much sensitive not only to the defects of bearing components but also to the rotor speed.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献