Solutions of dynamic and acoustic responses of a clamped rectangular plate in thermal environments

Author:

Geng Qian1,Li Yueming1

Affiliation:

1. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, China

Abstract

This work presents an investigation of vibration and acoustic response characters of a clamped rectangular thin plate in thermal environments. The general form of governing equation of plate flexural vibration with considering thermal loads is established, and the influence of uniform temperature change on response characters is studied in detail. A set of double sinusoidal mode shape functions for fully clamped boundaries is used to describe the displacement distribution. The governing equation is solved with Fourier series expansion to discuss the natural vibration and dynamic responses of a clamped plate in thermal environments. Accordingly, acoustic radiation characteristics are obtained based on Rayleigh integral. Results show that natural frequencies decrease with the increment of plate temperature, and the first natural frequency is much more sensitive to thermal environment changes. Response curves of plate vibration and radiated sound power shift toward lower frequency range, and the response amplitudes of the first resonant peak of the two responses present opposite variation tendencies. These phenomena are verified with finite element and boundary element simulations. Thermal loads reduce the radiation efficiency of the plate obviously below the critical frequency, but the maximum value almost remains unchanged.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3