Low-frequency dynamics of an electrorheological fluid in squeeze and shear modes. Part II: modeling and identification

Author:

Bauer Jens1,Dohnal Fadi1,Norrick Nicklas1

Affiliation:

1. Structural Dynamics Group, Department of Mechanical Engineering, Technische Universität Darmstadt, Germany

Abstract

Electrorheological fluids (ERFs) offer rapid control of damping using very low power requirements. Different models have been proposed to simulate the hysteresis phenomenon of ERFs. A modular test facility was designed to perform measurements of a specific electrorheological fluid in squeeze and shear modes in Part I. Based on these measurement cycles, material models for squeeze and shear modes are proposed and corresponding model parameters are identified within this parameter space. The fitted models are benchmarked against the measurement data and are capable of resembling the fluid’s dynamic properties at harmonic excitation, including transitions between Bingham-like and visco-elastic material behavior. Once model parameters are identified, the dynamics of an ERF are resembled excellently by phenomenological models. However, clear trends within the parameter space cannot be stated for all model parameters which prevents the derivation of analytical statements for the model parameters. Since the identification of model parameters is not transferable, a new adaptation is necessary for every application. Nevertheless, the presented procedure can be applied directly in these cases and is robust.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3