Affiliation:
1. Aerospace Engineering Department & Center of Excellence in Computational Aerospace, Amirkabir University of Technology, Tehran 15875-4413, Iran
Abstract
Forced vibration analysis of porous functionally graded nanoplates under uniform dynamic loads is performed based on generalized nonlocal strain gradient theory. In this model, both stiffness-softening and stiffness-hardening effects are considered for more reliable forced vibration analysis of nanoplates. The present model is based on a vibrating higher order nanoscale plate subjected to transverse uniform dynamic load. Nanopores or nanovoids are incorporated to the model based on a modified rule of mixture. According to t Hamilton’s principle, the formulation of dynamically loaded nanoplate is derived. Applying Galerkin’s method, the resonance frequencies and dynamic deflections are obtained. It is indicated that the forced vibration characteristics of the nanoplate are significantly influenced by the porosities, excitation frequency, nonlocal parameter, strain gradient parameter, material gradation, elastic foundation and dynamic load location.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献