Affiliation:
1. NextGen Aeronautics, Torrance, CA, USA
2. Center for Intelligent Material Systems and Structures, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0261, USA
Abstract
Gossamer structures have been a subject of renewed interest for space applications because of their low weights, on-orbit deploying capabilities, and minimal stowage volumes. In this study, vibration suppression of an inflated structure using piezoelectric actuators and sensors has been attempted. These actuators and sensors can be suitably used for gossamer structures since they can conform to curved surfaces and provide distributed actuation and sensing capabilities. Using the natural frequencies and mode shapes of the system (structure, actuators, and sensors), a state-space model is derived. For designing a robust vibration controller, we used a sliding mode technique. The derivations of the sliding model controller and observer are presented in details. Finally, by means of numerical analysis, the method was demonstrated for an inflated torus considering Macro-Fiber Composite (MFC™) as actuators and Polyvinylidene Fluoride (PVDF) as sensors. The simulation studies show that the piezoelectric actuators and sensors are suitable for vibration suppression of an inflatable torus. The robustness properties of the controller and observer against the parameter uncertainty and disturbances are also studied.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献