Dynamic modeling and response of a spur planetary gear system with journal bearings under gravity effects

Author:

Liu Zhenxing1,Liu Zhansheng1,Yu Xiangyu1

Affiliation:

1. School of Energy Science and Engineering, Harbin Institute of Technology, PR China

Abstract

This paper focuses on the modeling method and the gravity-induced dynamic response of a spur planetary gear system with journal bearings. The lumped-parameter model of a planetary gear system with journal bearings is established. Both contact on drive-side and back-side of the tooth are considered simultaneously. Linear and nonlinear bearing force models are introduced into the system model separately to take the planet bearing oil-film forces into account. A demonstration is given to show the adopted nonlinear oil-film force model is still valid for the lubrication of support for planet gears. Equilibrium positions of the planet gear are depicted under different input rotational speeds and input torques. Under gravity effect, system responses at different rotational speeds are calculated by employing Newmark integration; tooth wedging at ring-planet meshes is examined with different backlashes. The system responses are presented as vibration spectra, planet bearing forces, orbits of members, tooth forces, and the percentage of tooth wedging in one carrier cycle. The results show that the gravity effect dominates the response at low rotational speeds. The linear bearing force model is not valid in some cases. The fluctuation of the bearing force and the enlargement of the planet orbits are induced by gravity effect. Tooth wedging is the combined effect of gravity, centrifugal force, and planet bearing clearance.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3