Affiliation:
1. School of Mechanical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
Abstract
To solve the vibration problem of the thin-walled hull of AUVs, a piezoelectric active control method is used to suppress the vibration of the hull. Adopting improved Donnell–Mushtari theory, the thin-walled cylindrical hull of the AUV was theoretically modeled, and the natural frequency of the system was solved by numerical analysis. Based on the established dynamic equations, the PID controller and fuzzy PID controller were designed. An experimental platform for vibration control was set up to test the active vibration control of a thin-walled hull under transient, sinusoidal, and random excitations. The results show that the minimum natural frequency of the selected experimental hull is 588.1 Hz, and the error between the theoretically calculated and the simulated frequency of the first six orders is less than 1%. Under the fuzzy PID control, the stability time of the hull vibration with transient excitation is reduced by 43%, whereas the active vibration control effect can reach 31.4% with the sinusoidal excitation of 10 Hz. The results of the study provide theoretical basis and experimental support for the vibration control of AUVs.
Funder
National Natural Science Foundation of China
Qinglan Project of Jiangsu Province of China
Jiangsu Provincial Key Research and Development Program