Particle swarm optimization-based neural network control for an electro-hydraulic servo system

Author:

Yao Jianjun1,Jiang Guilin1,Gao Shuang1,Yan Han1,Di Duotao1

Affiliation:

1. College of Mechanical and Electrical Engineering, Harbin Engineering University, China

Abstract

This paper focuses on an electro-hydraulic servo system, which is derived from a shaking table. It proposes a control scheme based on a back propagation (BP) neural network, whose weights are trained by the particle swarm optimization (PSO) according to the fitness, which is determined by the input and the feedback signals. Each particle of PSO includes weights and thresholds of BP. The movement of each particle is adjusted by its local best-known position and the global best-known position in the searching space. With the update, a satisfactory solution can be achieved. In order to show the performance of the proposed control scheme, the designed network is also trained and tested by BP only. The comparisons between the PSO-BP and BP networks demonstrate that the PSO-BP one has better performance than that of BP, both in convergence speed and in convergence accuracy.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3