Forced vibration analysis of nonlinear systems using efficient path-following method

Author:

Mousavi Seyed Mojtaba1ORCID,Sadr Mohammad Homayoune1ORCID,Jelveh Meisam1ORCID

Affiliation:

1. Department of Aerospace Engineering, Amirkabir University of Technology, Iran

Abstract

In this article, nonlinear forced response of dynamical systems is studied using numerical continuation methods. Several methods are available to calculate nonlinear normal modes. Along with the existing analytical methods, recently, numerical methods, especially the pseudo-arclength continuation method, have attracted many researchers. The pseudo-arclength continuation method is a very powerful method which is capable of handling strongly nonlinear systems. However, as mentioned in recently published article reviews, the computational cost of the method has limited its application. In this research, an updating formula is embedded in the pseudo-arclength continuation algorithm to reduce the computational cost. This modified method is called the efficient path-following method. The assumptions and basis of the efficient path-following method algorithm are same as those presented in other references, but none of them have exploited the updating formula of the efficient path-following method to study the forced response of nonlinear dynamical systems. To investigate the capabilities of the method, forced response of a single-degree-of-freedom Duffing system is computed. It is seen that the efficient path-following method has decreased the computational time significantly up to 70%. The results are in very good conformance with those obtained in other references, which shows the accuracy of this method. To study the ability of the efficient path-following method to handle the multi-degree-of-freedom system, a four-degree-of-freedom nonlinear system is considered, and stable and unstable branches of the solution are computed. It is observed that as the nonlinearity of the system gets stronger, the updating formula becomes more effective.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3