Affiliation:
1. State Key Laboratory for Strength and Vibration of Mechanical Structures/Shaanxi Key Laboratory of Environment and Control for Flight Vehicle, Xi’an Jiaotong University, China
Abstract
In this article, the coupling effects of the unbalanced magnetic pull and ball bearing on nonlinear vibration of the three-phase asynchronous motor are investigated with the experimental and numerical methods. A test rig of a motor whose rotor supported by ball bearings is used and a 2 degrees of freedom magnetic solid coupling dynamic model of the motor rotor system is presented. The nonlinear dynamic response and spectrum are obtained from experiments and numerical analysis. The numerical results are in good agreement with test data, thus validating the presented model. It is found that the unbalanced magnetic pull and ball bearing forces possess the significantly interactional and nonlinear influences on the rotor dynamic characteristics. Small magnetic pull could impact the nonlinear bearing-rotor system, resulting in remarkable changes in the dynamic characteristics of the system. The effects of rotational speed and the rotor mass eccentricity on dynamic behaviors of the motor are discussed, and the results show that the magnetic pull gradually increases the amplitude of the ball bearing-rotor system, and its effect decreases with the increment of the rotational speed and mass eccentricity.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献