Nonlinear dynamics and control of helicopter ground resonance

Author:

Warrier Jayachandran1,Ali Shaikh Faruque2ORCID

Affiliation:

1. Rotary Wing Research & Design Center, Hindustan Aeronautics Limited, India

2. Department of Applied Mechanics, Indian Institute of Technology–Madras, India

Abstract

Ground resonance is an aero-mechanical instability in helicopters that use soft in-plane rotors. Traditionally, ground resonance is mitigated by using passive lead–lag dampers that provide sufficient in-plane damping. However, these dampers because of their passive nature cannot adapt to all operating conditions. In this work, a magnetorheological fluid–based semi-active lead–lag damper is proposed to offer controllable damping. Two nonlinear control strategies are reported to operate the voltage to be supplied to the magnetorheological damper. The first strategy is a model-based control using dynamic inversion. The second is a fuzzy logic control integrated with a particle swarm optimization algorithm to optimize the control parameters. Both control strategies are shown to be effective in eliminating ground resonance. Unlike bang–bang control, the prescribed control algorithms can make use of complete voltage level available in the magnetorheological damper with smooth voltage updates. A comparative study of the controller performances is made through appropriate performance indices and system responses. Finally, the most optimum control strategy to mitigate ground resonance is inferred.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theoretical switch model of novel asymmetric magnetorheological damper for shock and vibration application;Smart Materials and Structures;2023-12-07

2. Quasi-Static Modelling of a Full-Channel Effective Magnetorheological Damper with Trapezoidal Magnetic Rings;Materials;2023-10-23

3. The Solution of Helicopter Ground Resonance Instability;2023 10th International Conference on Recent Advances in Air and Space Technologies (RAST);2023-06-07

4. Flight data-driven intelligent prediction for fuselage vibration of helicopter;Aircraft Engineering and Aerospace Technology;2023-03-27

5. LQR-based Ground Resonance Suppression of Helicopter with Adaptive Landing Gear;2022 IEEE International Conference on Robotics and Biomimetics (ROBIO);2022-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3