Robust fault estimation of a blade pitch and drivetrain system in wind turbine model

Author:

Sedigh Ziyabari Seyedeh Hamideh1ORCID,Aliyari Shoorehdeli Mahdi2,Karimirad Madjid3ORCID

Affiliation:

1. Research Laboratory for Fault Detection and Identification (FDI), Faculty of Electrical Engineering, K. N. Toosi University of Technology, Iran

2. Faculty of Electrical Engineering, Department of Mechatronics Engineering, K. N. Toosi University of Technology, Iran

3. School of Natural and Built Environment, Queen’s University Belfast, UK

Abstract

In this article, a novel robust fault estimation scheme to ensure efficient and reliable operation of wind turbines has been presented. Wind turbines are complex systems with large flexible structures that work under very turbulent and unpredictable environmental conditions for a variable electrical grid. The proposed observer-based estimation scheme consists of a set of possible faults affecting the dynamics, sensors, and actuators of wind turbines. First, the pitch and drivetrain system faults occur simultaneously with process and sensor disturbances that are called unknown input signals. Second, through a series of coordinate transformations, the faulty subsystem is decoupled from the rest of the system. The first subsystem is affected by unknown inputs, and the second one is affected by faults. A reduced-order unknown input observer is designed to reconstruct states accurately, whereas a reduced-order sliding mode observer is designed for the second subsystem such that it is robust against unknown inputs and faults. Moreover, the reduced-order unknown input observer guarantees the asymptotic stability of the error dynamics using the Lyapunov theory method and completely removes unknown inputs; on the other hand, the reduced-order sliding mode observer is designed to reconstruct faults for the faulty subsystem accurately. Until now, authors only focused on an unknown input signal in the dynamics of the system, especially in nonlinear systems. The estimated fault will be adequate to accommodate the control loop, and sufficient conditions are developed to guarantee the stability of the state estimation error. In the next step, to figure the effectiveness of the proposed approach, a wind turbine benchmark system model is considered with faults and unknown inputs scenarios. The simulation results are used to validate the robustness of the proposed algorithms under noise conditions, and the results show that the algorithm could classify faults robustly.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3