Reliability assessment for hybrid solar tower under near-fault pulse-like ground motions using Kriging surrogate and subset simulation

Author:

Ding Yanqiong1ORCID,Xu Yazhou1ORCID,Bai Guoliang12ORCID

Affiliation:

1. School of civil engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi, China

2. Key Lab of Structural Engineering and Earthquake Resistance, Ministry of Education (XAUAT), Xi’an, Shaanxi, China

Abstract

Concentrated solar towers are commonly designed as high-rise hybrid structures, which exhibit properties of non-uniform mass and rigidity along the height of the tower, and consequently are vulnerable to strong seismic ground motions. This study presents a comprehensive analysis of the seismic performance of a hybrid solar tower, which is one of the tallest hybrid solar towers in the world. The hybrid solar tower includes a reinforced concrete tube at the bottom and a steel-truss tube at the top and is subjected to near-fault pulse-like ground motions. A simulation technique that utilizes the stochastic point-source model and a velocity pulse model was introduced to generate stochastic pulse-like ground motions. The stochastic response of the hybrid solar tower to near-fault pulse-like ground motions was computed to estimate the tower’s reliability. To enhance the efficiency of reliability estimation, an algorithm combining the Kriging surrogate and subset simulation (K-SS) was presented. The aggregate response of the tower was found to be significantly more damaging over the border of the reinforced concrete tube and the steel-truss tube than below the border. The study found that the hybrid solar tower has a reliability of 90.53% when subjected to stochastic near-fault pulse-like ground motions with a peak ground acceleration of 0.62 g. The findings of this study contribute to the understanding of the seismic performance of high-rise hybrid solar towers under near-fault pulse-like ground motions.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3