Investigation of power transmission across laminated composite doubly curved shell in the presence of external flow considering shear deformation shallow shell theory

Author:

Talebitooti R1ORCID,Zarastvand MR1,Gohari HD1

Affiliation:

1. Noise and Vibration Control Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Iran

Abstract

This study applies shear deformation shallow shell theory to inspect the acoustic behavior of laminated composite infinitely long doubly curved shallow shells subject to a radiating oblique plane sound wave. Herewith, a procedure is developed to investigate sound transmission loss through this shell, clarified as a ratio of incident power to transmitted power in the existence of mean flow. In a further step, displacements are developed as a linear combination of the thickness coordinate to designate an analytical solution based on shear deformation shallow shell theory. Consequently, an exact solution for sound transmission loss is brought forward by combining acoustic wave equations as a result of wave propagation through this shell with doubly curved shell equations of motion. Afterwards, the accuracy of the present formulation (shear deformation shallow shell theory) is determined by comparing the achieved results with those available in the literature and some assumptions associated with the geometric specifications of the plate are investigated. Finally, because of the remarkable achievement of the current formulation results in reduction of noise transmission into such structures, some effective parameters on sound transmission loss are used in numerical results, to solve this problem.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3