Amplification effect and influencing factors of rebound-collision impact amplifier

Author:

Shi Ye1,Lei Lei1ORCID,Yan Ming1,Gu Xiping1

Affiliation:

1. Shenyang University of Technology, Shenyang, China

Abstract

In strong impact environment, traditional impact test platform cannot obtain high peak acceleration, resulting in products being hindered in the testing process. The objective of this paper is to build the rebound-collision impact amplifier that can be used in a strong impact environment and to investigate its mechanism, influencing factors, and amplification effect. The kinematic model of the rebound-collision impact amplifier was established by combining dynamic contact theory with classical collision theory, considering energy loss, and introducing collision recovery coefficient. A theoretical formula for calculating acceleration and acceleration magnification was derived. The effects of the collision duration ratio, the mass ratio of the amplification platform to the falling platform, and the reserved clearance on the acceleration magnification were investigated, respectively. Finally, the feasibility test was verified. The test results show that the rebound-collision impact amplifier motion model is in good agreement with the theoretical model. Acceleration magnification decreases with increasing mass ratio and increases with increasing collision duration ratio. The ideal reserved clearance can be found to make the acceleration of the amplification platform obtain the maximum value. Selecting the ideal reserved clearance is more conducive to impact amplification.

Funder

Liaoning Provincial Department of Education Basic Research Projects for Higher Education Institutions

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3