Research on control method of Maglev vehicle-guideway coupling vibration system based on particle swarm optimization algorithm

Author:

Li Qin1ORCID,Wang Hui1,Shen Gang1

Affiliation:

1. Tongji University, Shanghai, China

Abstract

To solve the problem of vehicle-guideway coupling vibration, a new control approach for the Maglev vehicle-guideway coupled system was investigated. A simplified model of the system was built and a control strategy based on full state feedback and particle swarm optimization algorithm was designed. The robustness of the system considering different track stiffness and the maximum voltage of the magnet were considered when the cost function of the particle swarm algorithm was designed. A real-time test rig using dSPACE was built to test the control strategy. The result from the test rig shows that the new designed control strategy can keep the system stable and has a better response than the traditional linear quadratic optimal method, the control voltage is much lower, the settling time of step response is decreased and the maximum overshoot of the air gap is decreased more than 88%. The robustness of the system in different track stiffness conditions is also much better; that is, when the magnet and the track move relative to each other, the maximum amplitude of vibration of both the track and the magnet is 40–70% lower, and the oscillation caused by the shifting of the track beam converges much more quickly.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3