Affiliation:
1. Dynamical Systems Research Laboratory, Department of Mechanical Engineering & Materials Science, Duke University, NC, USA
Abstract
This study describes an approach for attractor selection (or multistability control) in nonlinear dynamical systems with constrained actuation. Attractor selection is obtained using two different deep reinforcement learning methods: (1) the cross-entropy method and (2) the deep deterministic policy gradient method. The framework and algorithms for applying these control methods are presented. Experiments were performed on a Duffing oscillator, as it is a classic nonlinear dynamical system with multiple attractors. Both methods achieve attractor selection under various control constraints. Although these methods have nearly identical success rates, the deep deterministic policy gradient method has the advantages of a high learning rate, low performance variance, and a smooth control approach. This study demonstrates the ability of two reinforcement learning approaches to achieve constrained attractor selection.
Funder
National Defense Science & Engineering Graduate
Army Research Office
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献