Damage detection based on system identification of concrete dams using an extended finite element–wavelet transform coupled procedure

Author:

Pirboudaghi Sajjad1,Tarinejad Reza1,Alami Mohammad Taghi1

Affiliation:

1. Faculty of Civil Engineering, University of Tabriz, Tabriz, Iran

Abstract

The aim of the present study is to propose a procedure for seismic cracking identification of concrete dams using a coupling of the extended finite element method (XFEM) based on cohesive crack segments (XFEM-COH) and continuous wavelet transform (CWT). First, the dam is numerically modeled using the traditional finite element method (FEM). Then, cracking capability is added to the dam structure by applying the XFEM-COH for concrete material. The results of both the methods under the seismic excitation have been compared and identified to damage detection purposes. In spite of predefined damage in some of the structural health monitoring (SHM) techniques, there is an advantage in the XFEM model where the whole dam structure is potentially under damage risk without initial crack, and may not crack at all. Finally, in order to evaluate any change in the system, that is, specification of any probable crack effects and nonlinear behavior, the structural modal parameters and their variation have been investigated using system identification based on the CWT. The results show that the extended finite element–wavelet transform procedure has high ability for the online SHM of concrete dams that by analysis of its results, the history of physical changes, cracking initiation time, and exact damage localization have been performed from comparing the intact (FEM) and damaged (XFEM) modal parameters of the structural response. In addition, any small change in the system is observable while the final crack profile and performance simulation of the dam body under strong seismic excitations have obtained.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3