Affiliation:
1. Aerospace Engineering Department, Amirkabir University of Technology, Iran
2. Aeronautics Department, Imperial College London, UK
Abstract
Super-harmonic components in response to the harmonic excitation are sensitive indicators of damages such as breathing cracks in beams or kissing bonds in adhesive joints. In a model-based damage identification process using pattern recognition, these damage indicators can be extracted from the finite element model for all probable damage cases using stepped-sine simulation that necessitates nonlinear transient dynamic analysis with high computational costs. In this study, a procedure based on nonlinear autoregressive with exogenous input model is introduced as an alternative shortcut method for extraction of the damage indicators. As a case study, the finite element model of a beam connected to a rigid support via a flexible adhesive layer was used to investigate the efficiency of the proposed method. Kissing bond was introduced to the model as the source of nonlinearity via contact elements. The results prove that the super-harmonic components of orders up to 3, extracted from the nonlinear autoregressive with exogenous input model, agreed well with those extracted directly from the finite element model, whereas the computational time is reduced by a factor of 1/5. Consequently, the proposed method is very advantageous in the stage of damage pattern database creation in a real-world model-based damage identification process based on pattern recognition.
Subject
Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献