Spherical tuned liquid damper for vibration control in wind turbines

Author:

Chen Jun-Ling1,Georgakis Christos T2

Affiliation:

1. Department of Building Engineering, Tongji University, Shanghai, People’s Republic of China

2. Department of Civil Engineering, Technical University of Denmark, Copenhagen, Denmark

Abstract

A tuned liquid damper (TLD), which consisted of two-layer hemispherical containers, partially filled with water, was investigated as a cost-effective method to reduce the wind-induced vibration of wind turbines. A 1/20 scaled test model was designed to investigate its performance on the shaking table. Three groups of equivalent ground accelerations were inputted to simulate the wind-induced dynamic response under different load cases. The influence of rotors and nacelle was assumed to be a concentrated tip mass. A series of free and forced vibration experiments were performed on the shaking table. The experimental results indicated that the spherical TLD could effectively improve the damping capacity of the test model. The standard deviation of the dynamic response could be effectively reduced when the excitation frequency was approximately equal to its fundamental frequency. For “overspeed” and “extreme operating gust” load cases, the standard deviations of the dynamic responses were reduced more than 40% when the liquid mass was about 2% of the generalized mass; for “parking” load cases, the corresponding standard deviation was reduced more than 50% when the liquid mass was only 1% of the generalized mass. That is to say, the spherical TLD can effectively improve the anti-fatigue performance of the wind turbine tower.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,Aerospace Engineering,Automotive Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3